Some q-supercongruences modulo the fourth power of a cyclotomic polynomial

نویسندگان

چکیده

With the help of creative microscoping method recently introduced by Guo and Zudilin Chinese remainder theorem for coprime polynomials, we establish a q -supercongruence with two parameters modulo [ n ] ? ( ) 3 . Here = 1 ? / is -th cyclotomic polynomial in In particular, confirm recent conjecture give complete -analogue Long's supercongruence. The latter also generalization obtained Schlosser.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

The Cyclotomic Polynomial Topologically

We interpret the coefficients of the cyclotomic polynomial in terms of simplicial homology.

متن کامل

Multiplicative Energy of Polynomial Images of Intervals Modulo q ∗ †

Given a smooth integer q, we use existing upper bounds for character sums to find a lower bound for the size of a multiplicative subgroup of the integers modulo q which contains the image of an interval of consecutive integers I ⊂ Zq under a polynomial f ∈ Z[X].

متن کامل

On the Cyclotomic Polynomial

For a given positive integer m and an algebraic number field K necessary and sufficient conditions for the mth cyclotomic polynomial to have K-integral solutions modulo a given integer of K are given. Among applications thereof are: that the solvability of the cyclotomic polynomial mod an integer yields information about the class number of related number fields; and about representation of int...

متن کامل

A Topological Interpretation of the Cyclotomic Polynomial

We interpret the coefficients of the cyclotomic polynomial in terms of simplicial homology. Résumé. Nous donnons une interprétation des coefficients du polynôme cyclotomique en utilisant l’homologie simpliciale.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2021

ISSN: ['0097-3165', '1096-0899']

DOI: https://doi.org/10.1016/j.jcta.2021.105469